

全球钢号百科!

Global Steel Grade Encyclopedia

涵盖的行业或国家与地区类别

UNI

ASME

EN

JB '国机械行业标准

UNS

美国机械工程师协会

CPM 20CV

CPM 20CV is a unique tool steel made by the Crucible Particle Metallurgy Process. It is a martensitic stainless steel with a high volume of vanadium carbides for exceptionally good wear resistance. CPM 20CV contains the highest amount of chromium of any high-vanadium stainless steel currently available. The chromium rich matrix provides outstanding corrosion resistance. CPM 20CV an excellent steel for plastic injection feed screws, barrel liners, screw tips and mold cavities, especially for plastic resins which contain abrasive fillers.

The CPM process results in a finer, more uniform carbide distribution imparting improved toughness and grindability to highly alloyed steels. The CPM process also alloys for the design of more highly alloyed grades which cannot be produced by conventional steelmaking.

CPM Steel

Conventional Steel

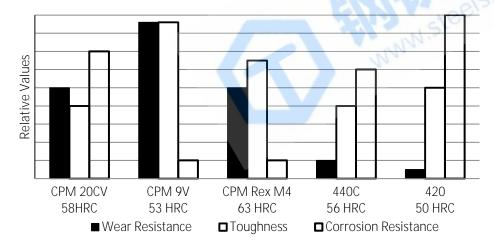
DATA SHEET

CRUCIBLE CPM® 20CV

Issue #1

Carbon	1.9%
Chromium	20.0%
Vanadium	4.0%
Molybdenum	1.0%
Tungsten	0.6%

Physical Properties


Density: 0.275 lb/in3 (7616 kg/m3)

Modulus of Elasticity: 31x106 psi (214 GPa) Machinability: 35-40% of a 1% carbon steel

Coefficient of Thermal Expansion:

Temperature °F	in/in/ °F x 10 ⁻⁶	Temperature °C	mm/mm °C x 10 ^{-€}
68 - 212	6.06	20 - 100	10.9
68 - 392	6.23	20 - 200	11.2
68 - 572	6,56	20 - 300	11.8
68 - 752	6,73	20 - 400	12.1
68 - 932	6.84	20 - 500	12.3

Steel Comparagraph

Typical Applications

High Performance, Long-Wearing Specialty Cutlery

Plastic Injection and Extrusion Feed Screws and Dies

Granulator Knives

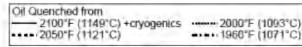
Pelletizing Equipment

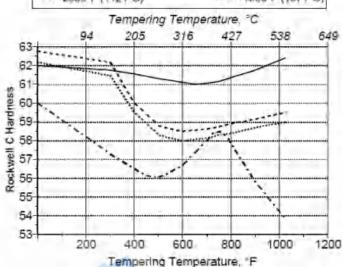
Wear Components for Food and Chemical Processing

Crucible Industries LLC

Crucible Industries, Crucible Industries logo, CPM, and 9V are all trademarks of Crucible Industries.

Edge Retention


(CATRA Test Relative to 440C)


96
180
145
120
100

The CATRA (Cutlery & Allied Trade Research Association) test machine measures the total number of silica impregnated cards cut in a sequence of passes along a blade. It is considered a relative measure of edge retention and wear resistance.

HEAT TREATMENT RESPONSE

For Furnace or Salt Bath Hardening:

www.steels.org.cr

HARDENING:

Preheating: Heat to 1400-1450°F (760-788°C) and equalize

Austenitizing (High Heat): Heat rapidly from the preheat to a temperature to within 1960-2150°F (1071-1177°C). A lower austenitizing temperature will maximize impact toughness. A higher austenitizing temperature will maximize wear resistance and corrosion resistance. Soak at the austenitizing temperature for 30 minutes.

Quenching Pressurized gas or warm oil.

For pressurized gas, the furnace should have a minimum quench pressure of 4 bars. A quench rate of approximately 400 °F (222°C) per minute to below 1000°F (538°C) is critical to obtain the desired properties.

For oil, quench until black, about 900°F (482°C), then cool in still air to 150-125°F (66-51°C)

Cryogenic Treatment: For austenitizing at 2100°F (1149°C) or higher, a cryogenic treatment is recommended after quenching to 150 to 125°F (68-51°C) to reduce retained austenite. Cool to -100°F (-73°C), remove from the cooling medium, and allow part to warm to ambient temperature in still air.

Tempering: Temper immediately after quenching, or after quenching and cryogenic treatment.

Typical temperature range is 400-800°F (204-427°C). Hold at temperature for 1 hour per inch (25.4mm) of thickness, 2 hours minimum then air cool to ambient temperature. The typical service hardness is 56-59 HRC, although higher hardnesses may be used for increased wear resistance. Tempering between 800 and 1100°F (427 to 583°C) will decrease corrosion resistance and toughness.